Когда компания Apple представила свое первое беспроводное зарядное устройство для сотовых телефонов и гаджетов, многие посчитали это революцией и огромным скачком вперед в беспроводных способах передачи энергии.
Но были ли они первопроходцами или еще до них, кому-то удавалось проделать нечто похожее, правда без должного маркетинга и пиара? Оказывается были, притом очень давно и изобретателей таких было множество.
Сейчас такой фокус может повторить любой школьник, выйдя в чистое поле и встав с лампой дневного света под линию высокого напряжения от 220кв и выше.
Чуть попозже, Тесла уже сумел зажечь таким же беспроводным способом фосфорную лампочку накаливания.
В России в 1895г А.Попов показал в работе первый в мире радиоприемник. А ведь по большому счету это тоже является беспроводной передачей энергии.
Самый главный вопрос и одновременно проблема всей технологии беспроводных зарядок и подобных методов заключается в двух моментах:
- как далеко можно передать электроэнергию таким способом
- и какое количество
Для начала давайте разберемся, какую мощность имеют приборы и бытовая техника нас окружающие. Например для телефона, смартчасов или планшета требуется максимум 10-12Вт.
У ноутбука запросы уже побольше - 60-80Вт. Это можно сравнить со средней лампочкой накаливания. А вот бытовая техника, особенно кухонная, кушает уже несколько тысяч ватт.
Поэтому очень важно не экономить с количеством розеток на кухне.
Так какие же методы и способы для передачи эл.энергии без применения кабелей или любых других проводников, придумало человечество за все эти годы. И самое главное, почему они до сих пор не внедрены столь активно в нашу жизнь, как того хотелось бы.
Взять ту же самую кухонную технику. Давайте разбираться подробнее.
Передача энергии через катушки
Самый легко реализуемый способ - использование катушек индуктивности.
Здесь принцип очень простой. Берутся 2 катушки и размещаются недалеко друг от друга. На одну из них подается питание. Другая играет роль приемника.
Когда в источнике питания регулируется или изменяется сила тока, на второй катушке магнитный поток автоматически также изменяется. Как гласят законы физики, при этом будет возникать ЭДС и она будет напрямую зависеть от скорости изменения этого потока.
Казалось бы все просто. Но недостатки портят всю радужную картинку. Минусов три:
- маленькая мощность
Данным способом вы не передадите большие объемы и не сможете подключить мощные приборы. А попытаетесь это сделать, то просто поплавите все обмотки.
- небольшое расстояние
Даже не задумывайтесь здесь о передаче электричества на десятки или сотни метров. Такой способ имеет ограниченное действие.
Чтобы физически понять, насколько все плохо, возьмите два магнита и прикиньте, как далеко их нужно развести, чтобы они перестали притягиваться или отталкиваться друг от друга. Вот примерно такая же эффективность и у катушек.
Можно конечно исхитриться и добиться того, чтобы эти два элемента всегда были близко друг от друга. Например электромобиль и специальная подзаряжающая дорога.
Но в какие суммы выльется строительство таких магистралей.
- малый КПД
Тот же Н.Тесла указал на это еще в 1899г. Позже он перешел на эксперименты с атмосферным электричеством, рассчитывая в нем найти разгадку и решение проблемы.
Однако какими бы не казались бесполезными все эти штуки, с их помощью до сих пор можно устраивать красивые светомузыкальные представления.
Или подзаряжать технику гораздо большую чем телефоны. Например электрические велосипеды.
Лазерная передача энергии
Но как же передать больше энергии на большее расстояние? Задумайтесь, в каких фильмах подобную технологию мы видим очень часто.
Первое что приходит на ум даже школьнику - это "Звездные войны", лазеры и световые мечи.
Безусловно, с их помощью можно передать большое количество эл.энергии на очень приличные расстояния. Но опять все портит маленькая проблемка.
К нашему счастью, но несчастью для лазера, на Земле есть атмосфера. А она как раз таки хорошо глушит и кушает большую часть всей энергии лазерного излучения. Поэтому с данной технологией нужно идти в космос.
В итоге выиграла компания Laser Motive. Их победный результат - 1км и 0,5квт переданной непрерывной мощности. Правда при этом в процессе передачи, ученые потеряли 90% всей изначальной энергии.
Но все равно, даже с КПД в десять процентов, результат посчитали успешным.
Напомним, что у простой лампочки полезной энергии, которая идет непосредственно на свет, и того меньше. Поэтому из них и выгодно изготавливать инфракрасные обогреватели.
Микроволны
Неужели нет другого реально работающего способа передать электричество без проводов. Есть, и его изобрели еще до попыток и детских игр в звездные войны.
Оказывается, что специальные микроволны с длиной в 12см (частота 2,45Ггц), являются как бы прозрачными для атмосферы и она им не мешает в распространении.
Какой бы ни была плохой погода, при передаче с помощью микроволн, вы потеряете всего пять процентов! Но для этого вы сначала должны преобразовать электрический ток в микроволны, затем их поймать и опять вернуть в первоначальное состояние.
Первую проблему ученые решили очень давно. Они изобрели для этого специальное устройство и назвали его магнетрон.
Причем это было сделано настолько профессионально и безопасно, что сегодня каждый из вас у себя дома имеет такой аппарат. Зайдите на кухню и обратите внимание на свою микроволновку.
У нее внутри стоит тот самый магнетрон с КПД равным 95%.
Но вот как сделать обратное преобразование? И тут было выработано два подхода:
- Американский
- Советский
В США еще в шестидесятых годах ученый У.Браун придумал антенну, которая и выполняла требуемую задачу. То есть преобразовывала падающее на него излучение, обратно в электрический ток.
Он даже дал ей свое название - ректенна.
После изобретения последовали опыты. И в 1975г при помощи ректенны, было передано и принято целых 30 квт мощности на расстоянии более одного километра. Потери при передаче составили всего 18%.
Спустя почти полвека, этот опыт до сих так никто и не смог превзойти. Казалось бы метод найден, так почему же эти ректенны не запустили в массы?
И тут опять всплывают недостатки. Ректенны были собраны на основе миниатюрных полупроводников. Нормальная работа для них - это передача всего нескольких ватт мощности.
А если вы захотите передать десятки или сотни квт, то готовьтесь собирать гигантские панели.
И вот тут как раз таки появляются не разрешимые сложности. Во-первых, это переизлучение.
Мало того, что вы потеряете из-за него часть энергии, так еще и приблизиться к панелям без потери своего здоровья не сможете.
Вторая головная боль - нестабильность полупроводников в панелях. Достаточно из-за малой перегрузки перегореть одному, и остальные выходят из строя лавинообразно, подобно спичкам.
В СССР все было несколько иначе. Не зря наши военные были уверены, что даже при ядерном взрыве, вся зарубежная техника сразу выйдет из строя, а советская нет. Весь секрет тут в лампах.
В МГУ два наших ученых В.Савин и В.Ванке, сконструировали так называемый циклотронный преобразователь энергии. Он имеет приличные размеры, так как собран на основе ламповой технологии.
Внешне это что-то вроде трубки длиной 40см и диаметром 15см. КПД у этого лампового агрегата чуть меньше, чем у американской полупроводниковой штуки - до 85%.
Но в отличие от полупроводниковых детекторов, циклотронный преобразователь энергии имеет ряд существенных достоинств:
- надежность
- большая мощность
- стойкость к перегрузкам
- отсутствие переизлучения
- невысокая цена изготовления
После первого появления полупроводников, все резко начали отказываться от ламповых технологий. Но практические испытания говорят о том, что это зачастую неправильный подход.
Конечно, ламповые сотовые телефоны по 20кг или компьютеры, занимающие целые комнаты никому не интересны.
Но иногда только проверенные старые методы, могут нас выручить в безвыходных ситуациях.
В итоге на сегодняшний день, мы имеем три возможности передать энергию без проводов. Самый первый из рассмотренных ограничен как расстоянием, так и мощностью.
Но этого вполне хватит, чтобы зарядить батарейку смартфона, планшета или чего-то побольше. КПД хоть и маленький, но метод все же рабочий.
Способ с лазерами хорош только в космосе. На поверхности земли это не очень эффективно. Правда когда другого выхода нет, можно воспользоваться и им.
Зато микроволны дают полет для фантазий. С их помощью можно передавать энергию:
- на земле и в космосе
- с поверхности земли на космический корабль или спутник
- и наоборот, со спутника в космосе обратно на землю
Реальные проекты в наши дни
За все последние годы, согласно вышеприведенным технологиям, ученые пытались и пытаются реализовать всего два проекта.
Первый из них начинался очень обнадеживающе. В 2000-х годах на о.Реюньон, возникла потребность в постоянной передаче 10кВт мощности на расстояние в 1км.
Горный рельеф и местная растительность, не позволяли проложить там ни воздушные линии электропередач, ни кабельные.
Все перемещения на острове в эту точку осуществлялось исключительно на вертолетах.
Для решения проблемы в одну команду были собраны лучшие умы из разных стран. В том числе и ранее упоминавшиеся в статье, наши ученые из МГУ В.Ванке и В.Савин.
Однако в момент, когда должны были приступать к практической реализации и строительству передатчиков и приемников энергии, проект заморозили и остановили. А с началом кризиса в 2008 году и вовсе забросили.
На самом деле это очень обидно, так как теоретическая работа там была проделана колоссальная и достойная реализации.
Второй проект, выглядит более безумным чем первый. Однако на него выделяются реальные средства. Сама идея была высказана еще в 1968г физиком из США П.Глэйзером.
Он предложил на тот момент не совсем нормальную идею - вывести на геостационарную орбиту в 36000 км над землей огромный спутник. На нем расположить солнечные панели, которые будут собирать бесплатную энергию солнца.
Затем все это должно преобразовываться в пучок СВЧ волн и передаваться на землю.
Этакая "звезда смерти" в наших земных реалиях.
На земле пучок нужно поймать гигантскими антеннами и преобразовать в электричество.
Насколько огромны должны быть эти антенны? Представьте, что если спутник будет в диаметре 1км, то на земле приемник должен быть в 5 раз больше - 5км (размер Садового кольца).
Но размеры это всего лишь малая часть проблем. После всех расчетов оказалось, что такой спутник вырабатывал бы электричество мощностью в 5ГВт. При достижении земли оставалось бы всего 2ГВт. К примеру Красноярская ГЭС дает 6ГВт.
Поэтому его идею рассмотрели, посчитали и отложили в сторонку, так как все изначально упиралось в цену. Стоимость космического проекта в те времена вылезла за 1трлн.$.
Но наука к счастью не стоит на месте. Технологии совершенствуются и дешевеют. Сейчас разработку такой солнечной космической станции уже ведут несколько стран. Хотя в начале двадцатого века для беспроводной передачи электроэнергии хватало всего одного гениального человека.
Общая цена проекта упала от изначальной до 25млрд.$. Остается вопрос - увидим ли мы в ближайшее время его реализацию?
К сожалению никто вам четкого ответа не даст. Ставки делают только на вторую половину нынешнего столетия. Поэтому пока давайте довольствоваться беспроводными зарядками для смартфонов и надеяться что ученым удастся повысить их КПД. Ну или в конце концов на Земле родится второй Никола Тесла.